Example 4: Solving the Navier-Stokes equations in parallel
Introduction
In this tutorial we will look at how to solve a nonliner problem in ideal.II.
It extends the couples Stokes equation from Example 2: Solving the linear Stokes equation and solves the nonlinear Navier-Stokes equation. For the linear algebra it builds upon Example 3: Solving the heat equation in parallel and uses the MPI parallel linear algebra provided through Trilinos as well.
The Navier-Stokes equation is again a coupled problem between a vector-valued velocity \(\bf u\in\mathbb{R}^d\) and a scalar-valued pressure \(p\in\mathbb{R}\). Compared to the previous Stokes equation we now take into account the effect of the fluid motion on the fluid itself through the nonlinear convection term \(\mathbf{u}\cdot\nabla\mathbf{u}\).
Navier-Stokes equation in strong formulation
The strong formulation reads as follows:
with kinematic viscosity \(\nu\in\mathbb{R}\).
Weak formulations of the Navier-Stokes equation
For the weak formulation we need choose the same function spaces as in for Stokes and obtain:
Navier-Stokes equation in weak formulation
Find \(\mathbf{u}\in\mathbf{X}+\mathbf{g}_D, p\in Y\) such that:
As in step-1 we allow for discontinuities between two temporal elements in the function space for \(\bf{u}\) and obtain:
Stokes equation in discontinuous weak formulation
Find \(\mathbf{u}\in\widetilde{\mathbf{X}}+\mathbf{g}_D, p\in Y\) such that:
For the temporal discretization we do the same steps as before and for the spatial discretization we have to use inf-sup stable element combinations. The simplest of these is the Q2/Q1 Taylor-Hood element with biquadratic elements for the velocity and bilinear elements for the pressure.
Problem statement
Now we actually solve the 2D-3 benchmark problem from [TurSchaBen1996]. The problem describes laminar flow of a fluid through a channel with a cylindrical obstacle, as shown in the following image:
For the pressure we prescribe homogeneous Neumann conditions on all boundaries and for the velocity we prescribe the following:
A parabolic velocity profile on the inflow \(\Gamma_\text{in}\)
no-slip,i.e. homogeneous Dirichlet conditon on the obstacle \(\Gamma_\text{circle}\) and channel walls \(\Gamma_\text{wall}\)
A homogeneous Neumann condition on the outflow \(\Gamma_\text{out}\)
We scale the inflow condition by a sine functions along the temporal domain \(I=(0,8)\) and obtain
with channel height \(H=0.41\).
Since this is a benchmark problem there are functional values we can compute to compare the results to other software packages.
We are going to calculate the temporal curves of the pressure at the front and back of the obstacle, i.e. at \(p(t,(0.15,0.1))\) and \(p(t,(0.15,0.2))\), their difference and the drag and lift coefficients
For this exact configuration the factor is \(\frac{2}{H^2L}=20\). The drag and lift forces \(F_D(t)\) and \(F_L(t)\) around the cylinder are defined by
The commented program
include files
Compared to step-2 for coupled problems and step-3 for MPI-parallel linear algebra with Trilinos, there are no new includes in this tutorial step.
ideal.II includes
#include <ideal.II/base/quadrature_lib.hh>
#include <ideal.II/base/time_iterator.hh>
#include <ideal.II/distributed/fixed_tria.hh>
#include <ideal.II/dofs/slab_dof_tools.hh>
#include <ideal.II/dofs/spacetime_dof_handler.hh>
#include <ideal.II/fe/fe_dg.hh>
#include <ideal.II/fe/spacetime_fe_values.hh>
#include <ideal.II/lac/spacetime_trilinos_vector.hh>
#include <ideal.II/numerics/vector_tools.hh>
deal.II includes
#include <deal.II/base/conditional_ostream.h>
#include <deal.II/base/function.h>
#include <deal.II/distributed/tria.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/grid/grid_in.h>
#include <deal.II/grid/grid_tools.h>
#include <deal.II/grid/manifold_lib.h>
#include <deal.II/lac/dynamic_sparsity_pattern.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_direct.h>
#include <deal.II/lac/sparsity_tools.h>
#include <deal.II/lac/trilinos_solver.h>
#include <deal.II/lac/trilinos_sparse_matrix.h>
#include <deal.II/lac/trilinos_vector.h>
#include <deal.II/lac/vector.h>
#include <deal.II/numerics/data_out.h>
Trilinos and C++ includes
#include <Teuchos_CommandLineProcessor.hpp>
#include <fstream>
#include <vector>
Space-time functions
The inflow condition is the same as in step-2
class PoisseuilleInflow : public dealii::Function<2>
{
public:
PoisseuilleInflow(double max_inflow_velocity = 1.5,
double channel_height = 0.41)
: Function<2>(3)
, max_inflow_velocity(max_inflow_velocity)
, H(channel_height)
{}
virtual double
value(const dealii::Point<2> &p, const unsigned int component = 0) const;
virtual void
vector_value(const dealii::Point<2> &p, dealii::Vector<double> &value) const;
private:
double max_inflow_velocity;
double H;
};
double
PoisseuilleInflow::value(const dealii::Point<2> &p,
const unsigned int component) const
{
Assert(component < this->n_components,
dealii::ExcIndexRange(component,
0,
this->n_components)) if (component == 0)
{
double y = p(1);
if (p(0) == 0 && y <= 0.41)
{
double t = get_time();
return 4 * max_inflow_velocity * y * (H - y) *
std::sin(M_PI * t * 0.125) / (H * H);
}
}
return 0;
}
void
PoisseuilleInflow::vector_value(const dealii::Point<2> &p,
dealii::Vector<double> &values) const
{
for (unsigned int c = 0; c < this->n_components; c++)
{
values(c) = value(p, c);
}
}
The Step4 class
This class describes the solution of the nonlinear Navier-Stokes equations with space-time slab tensor-product elements and a Newton linearization. Compared to earlier steps we have a few new functions We split the assembly into matrix and right hand side, as we have to call the latter more frequently in the Newton algorithm. Additionally, we now have functions to calculate the functionals, i.e. pressure as well as drag and lift.
class Step4
{
public:
Step4(unsigned int temporal_degree, bool write_vtu);
void
run();
private:
void
make_grid();
void
time_marching();
void
setup_system_on_slab();
void
assemble_residual_on_slab();
void
assemble_system_on_slab();
void
solve_Newton_problem_on_slab();
void
calculate_functional_values_on_slab();
double
calculate_pressure_at_point(const dealii::Point<2> x,
const dealii::TrilinosWrappers::MPI::Vector &u);
void
calculate_drag_lift_tensor(dealii::TrilinosWrappers::MPI::Vector &u,
dealii::Tensor<1, 2> &drag_lift_value);
void
output_results_on_slab();
MPI_Comm mpi_comm; // MPI communicator
bool write_vtu;
We want to write out the temporal trend of the functional values into a file and for that log we need to construct a name as well.
std::ofstream functional_log;
std::ostringstream logname;
We need the kinematic viscosity at multiple spots so we add it as a member variable to ensure consistency.
double nu_f;
dealii::ConditionalOStream pout;
idealii::spacetime::parallel::distributed::fixed::Triangulation<2>
triangulation;
idealii::spacetime::DoFHandler<2> dof_handler;
idealii::spacetime::TrilinosVector solution;
idealii::spacetime::DG_FiniteElement<2> fe;
dealii::SparsityPattern slab_sparsity_pattern;
std::shared_ptr<dealii::AffineConstraints<double>> slab_zero_constraints;
dealii::TrilinosWrappers::SparseMatrix slab_system_matrix;
dealii::TrilinosWrappers::MPI::Vector slab_system_rhs;
dealii::TrilinosWrappers::MPI::Vector slab_initial_value;
unsigned int slab;
dealii::TrilinosWrappers::MPI::Vector slab_newton_update;
dealii::TrilinosWrappers::MPI::Vector slab_owned_tmp;
dealii::TrilinosWrappers::MPI::Vector slab_relevant_tmp;
dealii::IndexSet slab_locally_owned_dofs;
dealii::IndexSet slab_locally_relevant_dofs;
dealii::IndexSet space_locally_owned_dofs;
dealii::IndexSet space_locally_relevant_dofs;
struct
{
idealii::slab::parallel::distributed::TriaIterator<2> tria;
idealii::slab::DoFHandlerIterator<2> dof;
idealii::slab::TrilinosVectorIterator solution;
} slab_its;
};
Step4::Step4
Step4::Step4(unsigned int temporal_degree, bool write_vtu)
: mpi_comm(MPI_COMM_WORLD)
, write_vtu(write_vtu)
, nu_f(1.0e-3)
, pout(std::cout, dealii::Utilities::MPI::this_mpi_process(mpi_comm) == 0)
, triangulation()
, dof_handler(&triangulation)
, fe(std::make_shared<dealii::FESystem<2>>(dealii::FE_Q<2>(2),
2,
dealii::FE_Q<2>(1),
1),
temporal_degree,
idealii::spacetime::DG_FiniteElement<2>::support_type::Legendre)
, slab(0)
{
This is the easiest place to add the temporal degree to the filename of the functional log, so we do that.
logname << "functional_log_dG" << temporal_degree;
}
Step4::run
void
Step4::run() // same as before
{
make_grid();
time_marching();
}
Step4::make_grid
void
Step4::make_grid()
{
auto space_tria = // construct an MPI parallel triangulation
std::make_shared<dealii::parallel::distributed::Triangulation<2>>(mpi_comm);
dealii::GridIn<2> grid_in;
grid_in.attach_triangulation(*space_tria);
std::ifstream input_file("nsbench4.inp");
grid_in.read_ucd(input_file);
dealii::Point<2> p(0.2, 0.2);
static const dealii::SphericalManifold<2> boundary(p);
dealii::GridTools::copy_boundary_to_manifold_id(*space_tria);
space_tria->set_manifold(80, boundary);
const unsigned int M = 256;
triangulation.generate(space_tria, M, 0, 8.);
const unsigned int n_ref_space = 2;
triangulation.refine_global(n_ref_space, 0);
dof_handler.generate();
To have the full information in the log we also add the number of temporal DoFs and the number of spatial refinements to the filename.
logname << "_M" << M << "_lvl" << n_ref_space << ".csv";
}
Step4::time_marching
void
Step4::time_marching()
{
idealii::TimeIteratorCollection<2> tic = idealii::TimeIteratorCollection<2>();
solution.reinit(triangulation.M());
slab_its.tria = triangulation.begin();
slab_its.dof = dof_handler.begin();
slab_its.solution = solution.begin();
slab = 0;
tic.add_iterator(&slab_its.tria, &triangulation);
tic.add_iterator(&slab_its.dof, &dof_handler);
tic.add_iterator(&slab_its.solution, &solution);
We don’t want to write each time DoF information multiple times, so we only open the file on rank 0. We also write out a header for the CSV file so it is clear which column will be which variable.
if (dealii::Utilities::MPI::this_mpi_process(mpi_comm) == 0)
{
std::cout << "Opening functional log file: " << logname.str()
<< std::endl;
functional_log.open(logname.str());
functional_log << "t, pfront, pback, pdiff, drag, lift" << std::endl;
}
pout << "*******Starting time-stepping*********" << std::endl;
for (; !tic.at_end(); tic.increment())
{
pout << "Starting time-step (" << slab_its.tria->startpoint() << ","
<< slab_its.tria->endpoint() << ")" << std::endl;
setup_system_on_slab();
As the system matrix for a nonlinear problem depends on the approximate solution, the assembly is done within the Newton iterations.
solve_Newton_problem_on_slab();
calculate_functional_values_on_slab();
if (write_vtu)
output_results_on_slab();
As in step-3 we need to extract the solution at the final time point as the final DoF is not in the same location for the chosen Legendre support points.
idealii::slab::VectorTools::extract_subvector_at_time_point(
*slab_its.dof,
*slab_its.solution,
slab_initial_value,
slab_its.tria->endpoint());
slab++;
}
if (dealii::Utilities::MPI::this_mpi_process(mpi_comm) == 0)
{
functional_log.close();
}
}
Step4::setup_system_on_slab
void
Step4::setup_system_on_slab()
{
slab_its.dof->distribute_dofs(fe);
If we renumber we get a problem with parallel data output, so we omit that here!
pout << "Number of degrees of freedom: \n\t" << slab_its.dof->n_dofs_space()
<< " (space) * " << slab_its.dof->n_dofs_time()
<< " (time) = " << slab_its.dof->n_dofs_spacetime() << std::endl;
As in step-3 we need to know which DoFs are owned by the current MPI rank and which are ghost points beloging to a different rank but are also part of an owned spatial element.
space_locally_owned_dofs = slab_its.dof->spatial()->locally_owned_dofs();
dealii::DoFTools::extract_locally_relevant_dofs(*slab_its.dof->spatial(),
space_locally_relevant_dofs);
slab_locally_owned_dofs = slab_its.dof->locally_owned_dofs();
slab_locally_relevant_dofs =
idealii::slab::DoFTools::extract_locally_relevant_dofs(*slab_its.dof);
slab_owned_tmp.reinit(slab_locally_owned_dofs, mpi_comm);
slab_relevant_tmp.reinit(slab_locally_owned_dofs,
slab_locally_relevant_dofs,
mpi_comm);
slab_newton_update.reinit(slab_locally_owned_dofs, mpi_comm);
if (slab == 0)
{
slab_initial_value.reinit(space_locally_owned_dofs,
space_locally_relevant_dofs,
mpi_comm);
slab_initial_value = 0;
}
We need two sets of constraints for the defect correction Newton method. The Newton updates will be added to the current solution in each step. So in order to leave the boundary conditions of the solution unchanged, the update will need to have zero Dirichlet boundary conditions. Consequently, the initial guess will need to have correct boundary conditions.
slab_zero_constraints = std::make_shared<dealii::AffineConstraints<double>>();
auto slab_initial_constraints =
std::make_shared<dealii::AffineConstraints<double>>();
auto zero = dealii::Functions::ZeroFunction<2>(3);
auto inflow = PoisseuilleInflow();
std::vector<bool> component_mask(3, true);
component_mask[2] = false;
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 0, inflow, slab_initial_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 2, zero, slab_initial_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 80, zero, slab_initial_constraints, component_mask);
slab_initial_constraints->close();
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 0, zero, slab_zero_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 2, zero, slab_zero_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 80, zero, slab_zero_constraints, component_mask);
slab_zero_constraints->close();
Since the Newton method is iterative we have to start with some initial guess and the convergence speed depends on the closeness of the current approximation to the correct solution. Without prior knowledge this initial guess is often zero. Here, however we know the solution at the last temporal DoF of the previous slab and for a fine enough temporal mesh that should at least be closer to the correct solution than zero and so we choose that and only correct the guess at the Dirichlet boundaries.
dealii::IndexSet::ElementIterator lri = space_locally_owned_dofs.begin();
dealii::IndexSet::ElementIterator lre = space_locally_owned_dofs.end();
for (; lri != lre; lri++)
{
for (unsigned int ii = 0; ii < slab_its.dof->n_dofs_time(); ii++)
{
slab_owned_tmp[*lri + slab_its.dof->n_dofs_space() * ii] =
slab_initial_value[*lri];
}
}
slab_initial_constraints->distribute(slab_owned_tmp);
The spatial pressure-pressure coupling block is empty and the sparsity pattern can be empty in these blocks as in step-2.
dealii::Table<2, dealii::DoFTools::Coupling> coupling_space(2 + 1, 2 + 1);
for (unsigned int i = 0; i < 2; i++)
{
coupling_space[i][2] = dealii::DoFTools::always;
coupling_space[2][i] = dealii::DoFTools::always;
for (unsigned int j = 0; j < 2; j++)
{
coupling_space[i][j] = dealii::DoFTools::always;
}
}
dealii::DynamicSparsityPattern dsp(slab_its.dof->n_dofs_spacetime());
idealii::slab::DoFTools::make_upwind_sparsity_pattern(*slab_its.dof,
coupling_space,
dsp,
slab_zero_constraints);
dealii::SparsityTools::distribute_sparsity_pattern(
dsp, slab_locally_owned_dofs, mpi_comm, slab_locally_relevant_dofs);
slab_system_matrix.reinit(slab_locally_owned_dofs,
slab_locally_owned_dofs,
dsp);
slab_its.solution->reinit(slab_locally_owned_dofs,
slab_locally_relevant_dofs,
mpi_comm);
slab_system_rhs.reinit(slab_locally_owned_dofs, mpi_comm);
*slab_its.solution = slab_owned_tmp;
}
Step4::assemble_system_on_slab
In contrast to previous steps we only assemble the matrix here. This is because we have to assemble the right hand side, i.e. Newton residual more often.
void
Step4::assemble_system_on_slab()
{
slab_system_matrix = 0;
We use a higher spatial quadrature order, since the nonlinear convection term is of higher order.
idealii::spacetime::QGauss<2> quad(fe.spatial()->degree + 3,
fe.temporal()->degree + 2);
idealii::spacetime::FEValues<2> fe_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
idealii::spacetime::FEJumpValues<2> fe_jump_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
const unsigned int dofs_per_spacetime_cell = fe.dofs_per_cell;
auto N = slab_its.tria->temporal()->n_global_active_cells();
dealii::FullMatrix<double> cell_matrix(N * dofs_per_spacetime_cell,
N * dofs_per_spacetime_cell);
std::vector<dealii::types::global_dof_index> local_spacetime_dof_index(
N * dofs_per_spacetime_cell);
unsigned int n;
unsigned int n_quad_spacetime = fe_values_spacetime.n_quadrature_points;
unsigned int n_quad_space = quad.spatial()->size();
dealii::FEValuesExtractors::Vector velocity(0);
dealii::FEValuesExtractors::Scalar pressure(2);
The convection term includes the previous Newton iterate and its derivative, so we have to allocate storage to evaluate the iterate at each quadrature point.
std::vector<dealii::Vector<double>> old_solution_values(
n_quad_spacetime, dealii::Vector<double>(3));
std::vector<std::vector<dealii::Tensor<1, 2>>> old_solution_grads(
n_quad_spacetime, std::vector<dealii::Tensor<1, 2>>(3));
for (const auto &cell_space :
slab_its.dof->spatial()->active_cell_iterators())
{
if (cell_space->is_locally_owned()) // only rank local contributions
{
fe_values_spacetime.reinit_space(cell_space);
fe_jump_values_spacetime.reinit_space(cell_space);
cell_matrix = 0;
for (const auto &cell_time :
slab_its.dof->temporal()->active_cell_iterators())
{
n = cell_time->index();
fe_values_spacetime.reinit_time(cell_time);
fe_jump_values_spacetime.reinit_time(cell_time);
fe_values_spacetime.get_local_dof_indices(
local_spacetime_dof_index);
evaluate the previous Newton iterate on the current space-time element.
fe_values_spacetime.get_function_values(*slab_its.solution,
old_solution_values);
fe_values_spacetime.get_function_space_gradients(
*slab_its.solution, old_solution_grads);
for (unsigned int q = 0; q < n_quad_spacetime; ++q)
{
We save the previous Newton iterate at the current quadrature point into more useful data structures for the assembly.
dealii::Tensor<1, 2> v;
dealii::Tensor<2, 2> grad_v;
for (int c = 0; c < 2; c++)
{
v[c] = old_solution_values[q](c);
for (int d = 0; d < 2; d++)
{
grad_v[c][d] = old_solution_grads[q][c][d];
}
}
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
for (unsigned int j = 0; j < dofs_per_spacetime_cell; ++j)
{
(convection term)
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.vector_value(velocity, i, q) *
(fe_values_spacetime.vector_space_grad(velocity,
j,
q) *
v +
grad_v * fe_values_spacetime.vector_value(velocity,
j,
q)) *
fe_values_spacetime.JxW(q);
\((\partial_t u,v)\)
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.vector_value(velocity, i, q) *
fe_values_spacetime.vector_dt(velocity, j, q) *
fe_values_spacetime.JxW(q);
\((\nabla u, \nabla v)\)
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
dealii::scalar_product(
fe_values_spacetime.vector_space_grad(velocity,
i,
q),
fe_values_spacetime.vector_space_grad(velocity,
j,
q)) *
fe_values_spacetime.JxW(q) * nu_f;
\(-(p,\nabla\cdot v)\)
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.vector_divergence(velocity,
i,
q) *
fe_values_spacetime.scalar_value(pressure, j, q) *
fe_values_spacetime.JxW(q);
\((\nabla\cdot u,q)\)
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.scalar_value(pressure, i, q) *
fe_values_spacetime.vector_divergence(velocity,
j,
q) *
fe_values_spacetime.JxW(q);
} // dofs j
} // dofs i
} // quad
for (unsigned int q = 0; q < n_quad_space; ++q)
{
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
for (unsigned int j = 0; j < dofs_per_spacetime_cell; ++j)
{
(u^+, v^+)
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_jump_values_spacetime.vector_value_plus(velocity,
i,
q) *
fe_jump_values_spacetime.vector_value_plus(velocity,
j,
q) *
fe_jump_values_spacetime.JxW(q);
-(u^-, v^+)
if (n > 0)
{
cell_matrix(i + n * dofs_per_spacetime_cell,
j + (n - 1) *
dofs_per_spacetime_cell) -=
fe_jump_values_spacetime.vector_value_plus(
velocity, i, q) *
fe_jump_values_spacetime.vector_value_minus(
velocity, j, q) *
fe_jump_values_spacetime.JxW(q);
}
} // dofs j
} // dofs i
}
} // cell time
slab_zero_constraints->distribute_local_to_global(
cell_matrix, local_spacetime_dof_index, slab_system_matrix);
}
} // cell space
slab_system_matrix.compress(dealii::VectorOperation::add); // communication
}
Step4::assemble_residual_on_slab
For the Newton iteration we also need to assemble the residual vector which also depends on the current slab solution/iterate.
void
Step4::assemble_residual_on_slab()
{
slab_system_rhs = 0;
idealii::spacetime::QGauss<2> quad(fe.spatial()->degree + 3,
fe.temporal()->degree + 2);
idealii::spacetime::FEValues<2> fe_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
idealii::spacetime::FEJumpValues<2> fe_jump_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
const unsigned int dofs_per_spacetime_cell = fe.dofs_per_cell;
auto N = slab_its.tria->temporal()->n_global_active_cells();
dealii::Vector<double> cell_rhs(N * dofs_per_spacetime_cell);
std::vector<dealii::types::global_dof_index> local_spacetime_dof_index(
N * dofs_per_spacetime_cell);
unsigned int n;
unsigned int n_quad_spacetime = fe_values_spacetime.n_quadrature_points;
unsigned int n_quad_space = quad.spatial()->size();
dealii::FEValuesExtractors::Vector velocity(0);
dealii::FEValuesExtractors::Scalar pressure(2);
Compared to the assembly of the system matrix we have to also evaluate the temporal derivative and the limits at the temporal element edges of the previous Newton iterate.
std::vector<dealii::Vector<double>> old_solution_values(
n_quad_spacetime, dealii::Vector<double>(3));
std::vector<dealii::Vector<double>> old_solution_dt(
n_quad_spacetime, dealii::Vector<double>(3));
std::vector<std::vector<dealii::Tensor<1, 2>>> old_solution_grads(
n_quad_spacetime, std::vector<dealii::Tensor<1, 2>>(3));
std::vector<dealii::Vector<double>> old_solution_plus(
n_quad_space, dealii::Vector<double>(3));
std::vector<dealii::Vector<double>> old_solution_minus(
n_quad_space, dealii::Vector<double>(3));
for (const auto &cell_space :
slab_its.dof->spatial()->active_cell_iterators())
{
if (cell_space->is_locally_owned()) // only rank local contributions
{
fe_values_spacetime.reinit_space(cell_space);
fe_jump_values_spacetime.reinit_space(cell_space);
cell_rhs = 0;
for (const auto &cell_time :
slab_its.dof->temporal()->active_cell_iterators())
{
n = cell_time->index();
fe_values_spacetime.reinit_time(cell_time);
fe_jump_values_spacetime.reinit_time(cell_time);
fe_values_spacetime.get_local_dof_indices(
local_spacetime_dof_index);
fe_values_spacetime.get_function_values(*slab_its.solution,
old_solution_values);
fe_values_spacetime.get_function_dt(*slab_its.solution,
old_solution_dt);
fe_values_spacetime.get_function_space_gradients(
*slab_its.solution, old_solution_grads);
for (unsigned int q = 0; q < n_quad_spacetime; ++q)
{
dealii::Tensor<1, 2> v;
dealii::Tensor<1, 2> dt_v;
dealii::Tensor<2, 2> grad_v;
const double p = old_solution_values[q](2);
for (int c = 0; c < 2; c++)
{
v[c] = old_solution_values[q](c);
dt_v[c] = old_solution_dt[q](c);
for (int d = 0; d < 2; d++)
{
grad_v[c][d] = old_solution_grads[q][c][d];
}
}
const double div_v = dealii::trace(grad_v);
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
(dt u, v)
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.vector_value(velocity, i, q) *
dt_v * fe_values_spacetime.JxW(q);
convection
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.vector_value(velocity, i, q) *
grad_v * v * fe_values_spacetime.JxW(q);
(grad u, grad v)
cell_rhs(i + n * dofs_per_spacetime_cell) -=
nu_f *
dealii::scalar_product(
fe_values_spacetime.vector_space_grad(velocity, i, q),
grad_v) *
fe_values_spacetime.JxW(q);
(pressure gradient)
cell_rhs(i + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.vector_divergence(velocity, i, q) *
p * fe_values_spacetime.JxW(q);
(div free constraint)
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.scalar_value(pressure, i, q) *
div_v * fe_values_spacetime.JxW(q);
} // dofs i
} // quad
if (n == 0)
{
fe_values_spacetime.spatial()->get_function_values(
slab_initial_value, old_solution_minus);
}
fe_jump_values_spacetime.get_function_values_plus(
*slab_its.solution, old_solution_plus);
dealii::Tensor<1, 2> v_plus;
dealii::Tensor<1, 2> v_minus;
for (unsigned int q = 0; q < n_quad_space; ++q)
{
for (unsigned int c = 0; c < 2; ++c)
{
v_plus[c] = old_solution_plus[q](c);
v_minus[c] = old_solution_minus[q](c);
}
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
\((u^+, v^+)\)
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_jump_values_spacetime.vector_value_plus(velocity,
i,
q) *
v_plus * fe_jump_values_spacetime.JxW(q);
\(-(u^-, v^+)\)
cell_rhs(i + n * dofs_per_spacetime_cell) +=
fe_jump_values_spacetime.vector_value_plus(velocity,
i,
q) *
v_minus * fe_jump_values_spacetime.JxW(q);
} // dofs i
} // quad_space
if (n < N - 1)
{
fe_jump_values_spacetime.get_function_values_minus(
*slab_its.solution, old_solution_minus);
}
} // cell time
slab_zero_constraints->distribute_local_to_global(
cell_rhs, local_spacetime_dof_index, slab_system_rhs);
}
} // cell space
We need to communicate local contributions to other processors after assembly
slab_system_rhs.compress(dealii::VectorOperation::add);
}
Step4::solve_Newton_problem_on_slab
void
Step4::solve_Newton_problem_on_slab()
{
pout << "Starting Newton solve" << std::endl;
We use a direct solver as the inner solver for each Newton iterate. Again, if you installed Trilinos with other third party solvers you can change them, e.g. to MUMPS or SuperLU_dist.
dealii::SolverControl sc(10000, 1.0e-14, false, false);
dealii::TrilinosWrappers::SolverDirect::AdditionalData ad(false,
"Amesos_Klu");
auto solver =
std::make_shared<dealii::TrilinosWrappers::SolverDirect>(sc, ad);
Newton parameters
double newton_lower_bound = 1.0e-10;
unsigned int max_newton_steps = 10;
unsigned int max_line_search_steps = 10;
double newton_rebuild_parameter = 0.1;
double newton_damping = 0.6;
assemble_residual_on_slab();
double newton_residual = slab_system_rhs.linfty_norm();
double old_newton_residual;
double new_newton_residual;
unsigned int newton_step = 1;
unsigned int line_search_step;
pout << "0\t" << newton_residual << std::endl;
We iterate either until the newton residual is small enough, or until we have reached the maxmimum number of Newton steps.
while (newton_residual > newton_lower_bound &&
newton_step <= max_newton_steps)
{
old_newton_residual = newton_residual;
assemble_residual_on_slab();
newton_residual = slab_system_rhs.linfty_norm();
if (newton_residual < newton_lower_bound)
{
pout << "res\t" << newton_residual << std::endl;
break;
}
If we do not have enough reduction from the previous step, we assemble a new system matrix with the most current iterate.
if (newton_residual / old_newton_residual > newton_rebuild_parameter)
{
solver = nullptr;
solver =
std::make_shared<dealii::TrilinosWrappers::SolverDirect>(sc, ad);
assemble_system_on_slab();
Since we are using a direct solver we only have to do the costly factorization once after assembling a new matrix.
solver->initialize(slab_system_matrix);
}
Having an existing factorization we only have to do the actual solve, i.e. two triangular matrix solves. Note that we solve for an update, i.e. \(\delta U\) instead of \(U\) directly.
solver->solve(slab_newton_update, slab_system_rhs);
We have to make sure the boundary values are correct.
slab_zero_constraints->distribute(slab_newton_update);
Finally we update the ghost values in the temporary vector.
slab_owned_tmp = *slab_its.solution;
Now, we update our solution with a possibly damped upgrade,
i.e. \(U^\text{new}=U^\text{old}+\alpha\delta U\).
We start by trying a full step (\(\alpha=1\)) and check if that
leads to a reduction in the residual. If that is not the case,
we dampen the update by multiplying the step length \(\alpha\) with
newton_damping
. We continue dampening until we get a reduction or
until we have done max_line_search_steps
dampening steps.
for (line_search_step = 0; line_search_step < max_line_search_steps;
line_search_step++)
{
slab_owned_tmp += slab_newton_update;
*slab_its.solution = slab_owned_tmp;
assemble_residual_on_slab();
new_newton_residual = slab_system_rhs.linfty_norm();
if (new_newton_residual < newton_residual)
break;
else
slab_owned_tmp -= slab_newton_update;
slab_newton_update *= newton_damping;
}
In the following we output information on the current Newton step to console, including the current residual, reduction and whether or not the matrix had to be rebuilt
pout << std::setprecision(5) << newton_step << "\t" << std::scientific
<< newton_residual << "\t" << std::scientific
<< newton_residual / old_newton_residual << "\t";
if (newton_residual / old_newton_residual > newton_rebuild_parameter)
pout << "r\t";
else
pout << " \t";
pout << line_search_step << "\t" << std::scientific << std::endl;
newton_step++; // Update working index
}
}
Step4::calculate_functional_values_on_slab
void
Step4::calculate_functional_values_on_slab()
{
We want to plot the curves of the functional values, so we need to know the time points. The following constructs a dummy quadrature rule that does not have valid weights and is only used to get the support points of the temporal finite element.
dealii::Quadrature<1> quad_time(
slab_its.dof->temporal()->get_fe(0).get_unit_support_points());
Similarly, our temporal FEValues object is only used to query the support points.
dealii::FEValues<1> fev(slab_its.dof->temporal()->get_fe(0),
quad_time,
dealii::update_quadrature_points);
std::vector<dealii::types::global_dof_index> local_indices(
slab_its.dof->dofs_per_cell_time());
auto n_dofs = slab_its.dof->n_dofs_time();
dealii::TrilinosWrappers::MPI::Vector tmp = *slab_its.solution;
allocate storage only once
double time = 0.;
unsigned int time_dof = 0;
double pfront = 0.;
double pback = 0.;
double pdiff = 0.;
dealii::Tensor<1, 2> drag_lift_tensor;
Points for pressure evaluation
dealii::Point<2> front(0.15, 0.2);
dealii::Point<2> back(0.25, 0.2);
The vector to extract the solution at a given temporal DoF to
dealii::TrilinosWrappers::MPI::Vector local_solution;
local_solution.reinit(space_locally_owned_dofs,
space_locally_relevant_dofs,
mpi_comm);
In contrast to the assembly functions we start with the temporal element loop here as we want to write out the functional values in sequence.
for (const auto &cell_time :
slab_its.dof->temporal()->active_cell_iterators())
{
fev.reinit(cell_time);
cell_time->get_dof_indices(local_indices);
for (unsigned int q = 0; q < quad_time.size(); ++q)
{
time = fev.quadrature_point(q)[0];
time_dof = local_indices[q];
idealii::slab::VectorTools::extract_subvector_at_time_dof(
*slab_its.solution, local_solution, time_dof);
The actual functional value calculations are put into seperate functions to make the whole problem easier to extend.
pfront = calculate_pressure_at_point(front, local_solution);
pback = calculate_pressure_at_point(back, local_solution);
pdiff = pfront - pback;
calculate_drag_lift_tensor(local_solution, drag_lift_tensor);
We want to write a comma seperated values (CSV) file, so we write out the values for this DoF in a single line.
functional_log << time << ", " << pfront << ", " << pback << ", "
<< pdiff << ", " << drag_lift_tensor[0] << ", "
<< drag_lift_tensor[1] << std::endl;
}
}
}
Step4::calculate_pressure_at_point
double
Step4::calculate_pressure_at_point(
const dealii::Point<2> x,
const dealii::TrilinosWrappers::MPI::Vector &u)
{
Storage for the local solution at the given point.
dealii::Vector<double> x_h(3);
The evaluation point will only live on a single rank, so we catch the
ExcPointNotAvailableHere
exception on all others
try
{
dealii::VectorTools::point_value(*slab_its.dof->spatial(), u, x, x_h);
}
catch (typename dealii::VectorTools::ExcPointNotAvailableHere e)
{}
We need to figure out which rank has the nonzero value
auto minmax = dealii::Utilities::MPI::min_max_avg(x_h[2], mpi_comm);
Check if the actual value is negative, i.e. it’s absolute value is larger than the maximum (which then is 0)
if (std::abs(minmax.min) > minmax.max)
{
return minmax.min;
}
else
{
return minmax.max;
}
}
Step4::calculate_drag_lift_tensor
void
Step4::calculate_drag_lift_tensor(dealii::TrilinosWrappers::MPI::Vector &u,
dealii::Tensor<1, 2> &drag_lift_value)
{
We want to calculate drag and lift on the obstacle boundary,
so we need a face quadrature rule and matching FEFaceValues
const dealii::QGauss<1> face_quad(6);
dealii::FEFaceValues<2> fe_face_values(*fe.spatial(),
face_quad,
dealii::update_values |
dealii::update_gradients |
dealii::update_normal_vectors |
dealii::update_JxW_values |
dealii::update_quadrature_points);
const unsigned int dofs_per_cell = slab_its.dof->dofs_per_cell_space();
const unsigned int n_face_q_points = face_quad.size();
std::vector<unsigned int> local_dof_indices(dofs_per_cell);
std::vector<dealii::Vector<double>> face_solution_values(
n_face_q_points, dealii::Vector<double>(3));
std::vector<std::vector<dealii::Tensor<1, 2>>> face_solution_grads(
n_face_q_points, std::vector<dealii::Tensor<1, 2>>(3));
Allocate storage for \(p*I\), \(\nabla v\) and the stress tensor \(-p*I+\nu*\nabla v\) needed in the calculation
dealii::Tensor<2, 2> pI;
pI.clear();
dealii::Tensor<2, 2> grad_v;
dealii::Tensor<2, 2> stress
drag_lift_value = 0.;
We loop over spatial elements only as we call this function from within a temporal loop. We only consider elements that are owned by the current rank and also at a boundary.
for (const auto &cell : slab_its.dof->spatial()->active_cell_iterators())
{
if (cell->is_locally_owned() && cell->at_boundary())
{
On each spatial element we loop over the faces and only consider those that are at the obstacle boundary (id 80)
for (unsigned int face = 0;
face < dealii::GeometryInfo<2>::faces_per_cell;
++face)
if (cell->face(face)->at_boundary() &&
cell->face(face)->boundary_id() == 80)
{
fe_face_values.reinit(cell, face);
fe_face_values.get_function_values(slab_initial_value,
face_solution_values);
fe_face_values.get_function_gradients(slab_initial_value,
face_solution_grads);
Loop over quadrature points on the current face
for (unsigned int q = 0; q < n_face_q_points; ++q)
{
Update the values in \(p*I\) and \(\nabla v\)
for (unsigned int l = 0; l < 2; ++l)
{
pI[l][l] = face_solution_values[q][2];
for (unsigned int m = 0; m < 2; ++m)
{
grad_v[l][m] = face_solution_grads[q][l][m];
}
}
stress = -pI + nu_f * grad_v;
Add the local contributions to the drag lift tensor
drag_lift_value -= stress *
fe_face_values.normal_vector(q) *
fe_face_values.JxW(q);
}
}
}
}
For now we only have rank local contributions to the drag lift tensor, so we need to sum these up.
double tmp = dealii::Utilities::MPI::sum(drag_lift_value[0], mpi_comm);
drag_lift_value[0] = tmp;
tmp = dealii::Utilities::MPI::sum(drag_lift_value[1], mpi_comm);
drag_lift_value[1] = tmp;
Finally, we have to scale the calculated value.
drag_lift_value *= 20.;
}
Step4::output_results_on_slab
void
Step4::output_results_on_slab() // Nothing new compared to step-2
{
auto n_dofs = slab_its.dof->n_dofs_time();
std::vector<std::string> field_names;
std::vector<dealii::DataComponentInterpretation::DataComponentInterpretation>
dci;
for (unsigned int i = 0; i < 2; i++)
{
field_names.push_back("velocity");
dci.push_back(
dealii::DataComponentInterpretation::component_is_part_of_vector);
}
field_names.push_back("pressure");
dci.push_back(dealii::DataComponentInterpretation::component_is_scalar);
dealii::TrilinosWrappers::MPI::Vector tmp = *slab_its.solution;
for (unsigned i = 0; i < n_dofs; i++)
{
dealii::DataOut<2> data_out;
data_out.attach_dof_handler(*slab_its.dof->spatial());
dealii::TrilinosWrappers::MPI::Vector local_solution;
local_solution.reinit(space_locally_owned_dofs,
space_locally_relevant_dofs,
mpi_comm);
idealii::slab::VectorTools::extract_subvector_at_time_dof(tmp,
local_solution,
i);
data_out.add_data_vector(local_solution,
field_names,
dealii::DataOut<2>::type_dof_data,
dci);
data_out.build_patches(2);
std::ostringstream filename;
filename << "newton_navierstokes_solution_dG(" << fe.temporal()->degree
<< ")_t_" << slab * n_dofs + i << ".vtu";
instead of a vtk we use the parallel write function
data_out.write_vtu_in_parallel(filename.str().c_str(), mpi_comm);
}
}
The main function
int
main(int argc, char *argv[])
{
With MPI we need to begin with an InitFinalize call.
dealii::Utilities::MPI::MPI_InitFinalize mpi(argc, argv, 1);
As in step-3 we want to pass command line arguments for a parameter study, but we only want to be able to suppress VTU output and vary the temporal finite element order.
Teuchos::CommandLineProcessor clp;
clp.setDocString(
"This example program demonstrates solving the Navier-Stokes "
"equation with Trilinos + MPI");
bool write_vtu = true;
clp.setOption("write-vtu",
"no-vtu",
&write_vtu,
"Write results into vtu files?");
temporal finite element order
int r = 0;
clp.setOption("r", &r, "temporal FE degree");
clp.throwExceptions(false);
Teuchos::CommandLineProcessor::EParseCommandLineReturn parse_return =
clp.parse(argc, argv);
if (parse_return == Teuchos::CommandLineProcessor::PARSE_HELP_PRINTED)
{
return 0; // don't fail if the program was called with ``--help``.
}
if (parse_return != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
{
return 1; // Error!
}
Step4 problem(r, write_vtu);
problem.run();
}
Results
As before we start with the animations of the resulting fields, i.e. velocity magnitude and pressure, in the VTU files.
Comparison to benchmark results
Finally, we want to compare our results to results from the finite element software FEATFLOW which are published on their benchmark website.
The ideal.II results have been obtained by runnning the R files in the example folder.
We can see that the drag coefficient mostly depends on the spatial discretization as our results overlay each other until \(t\approx 4.2\). We can also see that \(dG(0)\) produces a smoother curve due to numerical dampening.
For the lift we can see the numerical dampening even more clearly as the \(dG(0)\) discretization does not produce the correct oscillations. For the higher order discretizations we see that the oscillation frequency is close to the results of FEATFLOW with refinement level 2, which has a similar number of spatial DoFs. We also see that the peaks are not matching, which might in part be because there is no temporal DoF close enough to the peak point.
For the pressure we see a similar picture compared to the drag, but now our results are almost completely overlaying the FEATFLOW level 2 results. .. image:: ../_static/examples/NSE_results_idealii_vs_FEATFLOW_pressure.svg
The plain program
#include <ideal.II/base/quadrature_lib.hh>
#include <ideal.II/base/time_iterator.hh>
#include <ideal.II/distributed/fixed_tria.hh>
#include <ideal.II/dofs/slab_dof_tools.hh>
#include <ideal.II/dofs/spacetime_dof_handler.hh>
#include <ideal.II/fe/fe_dg.hh>
#include <ideal.II/fe/spacetime_fe_values.hh>
#include <ideal.II/lac/spacetime_trilinos_vector.hh>
#include <ideal.II/numerics/vector_tools.hh>
#include <deal.II/base/conditional_ostream.h>
#include <deal.II/base/function.h>
#include <deal.II/distributed/tria.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/grid/grid_in.h>
#include <deal.II/grid/grid_tools.h>
#include <deal.II/grid/manifold_lib.h>
#include <deal.II/lac/dynamic_sparsity_pattern.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_direct.h>
#include <deal.II/lac/sparsity_tools.h>
#include <deal.II/lac/trilinos_solver.h>
#include <deal.II/lac/trilinos_sparse_matrix.h>
#include <deal.II/lac/trilinos_vector.h>
#include <deal.II/lac/vector.h>
#include <deal.II/numerics/data_out.h>
#include <Teuchos_CommandLineProcessor.hpp>
#include <fstream>
#include <vector>
class PoisseuilleInflow : public dealii::Function<2>
{
public:
PoisseuilleInflow(double max_inflow_velocity = 1.5,
double channel_height = 0.41)
: Function<2>(3)
, max_inflow_velocity(max_inflow_velocity)
, H(channel_height)
{}
virtual double
value(const dealii::Point<2> &p, const unsigned int component = 0) const;
virtual void
vector_value(const dealii::Point<2> &p, dealii::Vector<double> &value) const;
private:
double max_inflow_velocity;
double H;
};
double
PoisseuilleInflow::value(const dealii::Point<2> &p,
const unsigned int component) const
{
Assert(component < this->n_components,
dealii::ExcIndexRange(component,
0,
this->n_components)) if (component == 0)
{
double y = p(1);
if (p(0) == 0 && y <= 0.41)
{
double t = get_time();
return 4 * max_inflow_velocity * y * (H - y) *
std::sin(M_PI * t * 0.125) / (H * H);
}
}
return 0;
}
void
PoisseuilleInflow::vector_value(const dealii::Point<2> &p,
dealii::Vector<double> &values) const
{
for (unsigned int c = 0; c < this->n_components; c++)
{
values(c) = value(p, c);
}
}
class Step4
{
public:
Step4(unsigned int temporal_degree, bool write_vtu);
void
run();
private:
void
make_grid();
void
time_marching();
void
setup_system_on_slab();
void
assemble_residual_on_slab();
void
assemble_system_on_slab();
void
solve_Newton_problem_on_slab();
void
calculate_functional_values_on_slab();
double
calculate_pressure_at_point(const dealii::Point<2> x,
const dealii::TrilinosWrappers::MPI::Vector &u);
void
calculate_drag_lift_tensor(dealii::TrilinosWrappers::MPI::Vector &u,
dealii::Tensor<1, 2> &drag_lift_value);
void
output_results_on_slab();
MPI_Comm mpi_comm; // MPI communicator
bool write_vtu;
std::ofstream functional_log;
std::ostringstream logname;
double nu_f;
dealii::ConditionalOStream pout;
idealii::spacetime::parallel::distributed::fixed::Triangulation<2>
triangulation;
idealii::spacetime::DoFHandler<2> dof_handler;
idealii::spacetime::TrilinosVector solution;
idealii::spacetime::DG_FiniteElement<2> fe;
dealii::SparsityPattern slab_sparsity_pattern;
std::shared_ptr<dealii::AffineConstraints<double>> slab_zero_constraints;
dealii::TrilinosWrappers::SparseMatrix slab_system_matrix;
dealii::TrilinosWrappers::MPI::Vector slab_system_rhs;
dealii::TrilinosWrappers::MPI::Vector slab_initial_value;
unsigned int slab;
dealii::TrilinosWrappers::MPI::Vector slab_newton_update;
dealii::TrilinosWrappers::MPI::Vector slab_owned_tmp;
dealii::TrilinosWrappers::MPI::Vector slab_relevant_tmp;
dealii::IndexSet slab_locally_owned_dofs;
dealii::IndexSet slab_locally_relevant_dofs;
dealii::IndexSet space_locally_owned_dofs;
dealii::IndexSet space_locally_relevant_dofs;
struct
{
idealii::slab::parallel::distributed::TriaIterator<2> tria;
idealii::slab::DoFHandlerIterator<2> dof;
idealii::slab::TrilinosVectorIterator solution;
} slab_its;
};
Step4::Step4(unsigned int temporal_degree, bool write_vtu)
: mpi_comm(MPI_COMM_WORLD)
, write_vtu(write_vtu)
, nu_f(1.0e-3)
, pout(std::cout, dealii::Utilities::MPI::this_mpi_process(mpi_comm) == 0)
, triangulation()
, dof_handler(&triangulation)
, fe(std::make_shared<dealii::FESystem<2>>(dealii::FE_Q<2>(2),
2,
dealii::FE_Q<2>(1),
1),
temporal_degree,
idealii::spacetime::DG_FiniteElement<2>::support_type::Legendre)
, slab(0)
{
logname << "functional_log_dG" << temporal_degree;
}
void
Step4::run() // same as before
{
make_grid();
time_marching();
}
void
Step4::make_grid()
{
auto space_tria = // construct an MPI parallel triangulation
std::make_shared<dealii::parallel::distributed::Triangulation<2>>(mpi_comm);
dealii::GridIn<2> grid_in;
grid_in.attach_triangulation(*space_tria);
std::ifstream input_file("nsbench4.inp");
grid_in.read_ucd(input_file);
dealii::Point<2> p(0.2, 0.2);
static const dealii::SphericalManifold<2> boundary(p);
dealii::GridTools::copy_boundary_to_manifold_id(*space_tria);
space_tria->set_manifold(80, boundary);
const unsigned int M = 256;
triangulation.generate(space_tria, M, 0, 8.);
const unsigned int n_ref_space = 2;
triangulation.refine_global(n_ref_space, 0);
dof_handler.generate();
logname << "_M" << M << "_lvl" << n_ref_space << ".csv";
}
void
Step4::time_marching()
{
idealii::TimeIteratorCollection<2> tic = idealii::TimeIteratorCollection<2>();
solution.reinit(triangulation.M());
slab_its.tria = triangulation.begin();
slab_its.dof = dof_handler.begin();
slab_its.solution = solution.begin();
slab = 0;
tic.add_iterator(&slab_its.tria, &triangulation);
tic.add_iterator(&slab_its.dof, &dof_handler);
tic.add_iterator(&slab_its.solution, &solution);
if (dealii::Utilities::MPI::this_mpi_process(mpi_comm) == 0)
{
std::cout << "Opening functional log file: " << logname.str()
<< std::endl;
functional_log.open(logname.str());
functional_log << "t, pfront, pback, pdiff, drag, lift" << std::endl;
}
pout << "*******Starting time-stepping*********" << std::endl;
for (; !tic.at_end(); tic.increment())
{
pout << "Starting time-step (" << slab_its.tria->startpoint() << ","
<< slab_its.tria->endpoint() << ")" << std::endl;
setup_system_on_slab();
solve_Newton_problem_on_slab();
calculate_functional_values_on_slab();
if (write_vtu)
output_results_on_slab();
idealii::slab::VectorTools::extract_subvector_at_time_point(
*slab_its.dof,
*slab_its.solution,
slab_initial_value,
slab_its.tria->endpoint());
slab++;
}
if (dealii::Utilities::MPI::this_mpi_process(mpi_comm) == 0)
{
functional_log.close();
}
}
void
Step4::setup_system_on_slab()
{
slab_its.dof->distribute_dofs(fe);
pout << "Number of degrees of freedom: \n\t" << slab_its.dof->n_dofs_space()
<< " (space) * " << slab_its.dof->n_dofs_time()
<< " (time) = " << slab_its.dof->n_dofs_spacetime() << std::endl;
space_locally_owned_dofs = slab_its.dof->spatial()->locally_owned_dofs();
dealii::DoFTools::extract_locally_relevant_dofs(*slab_its.dof->spatial(),
space_locally_relevant_dofs);
slab_locally_owned_dofs = slab_its.dof->locally_owned_dofs();
slab_locally_relevant_dofs =
idealii::slab::DoFTools::extract_locally_relevant_dofs(*slab_its.dof);
slab_owned_tmp.reinit(slab_locally_owned_dofs, mpi_comm);
slab_relevant_tmp.reinit(slab_locally_owned_dofs,
slab_locally_relevant_dofs,
mpi_comm);
slab_newton_update.reinit(slab_locally_owned_dofs, mpi_comm);
if (slab == 0)
{
slab_initial_value.reinit(space_locally_owned_dofs,
space_locally_relevant_dofs,
mpi_comm);
slab_initial_value = 0;
}
slab_zero_constraints = std::make_shared<dealii::AffineConstraints<double>>();
auto slab_initial_constraints =
std::make_shared<dealii::AffineConstraints<double>>();
auto zero = dealii::Functions::ZeroFunction<2>(3);
auto inflow = PoisseuilleInflow();
std::vector<bool> component_mask(3, true);
component_mask[2] = false;
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 0, inflow, slab_initial_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 2, zero, slab_initial_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 80, zero, slab_initial_constraints, component_mask);
slab_initial_constraints->close();
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 0, zero, slab_zero_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 2, zero, slab_zero_constraints, component_mask);
idealii::slab::VectorTools::interpolate_boundary_values(
*slab_its.dof, 80, zero, slab_zero_constraints, component_mask);
slab_zero_constraints->close();
dealii::IndexSet::ElementIterator lri = space_locally_owned_dofs.begin();
dealii::IndexSet::ElementIterator lre = space_locally_owned_dofs.end();
for (; lri != lre; lri++)
{
for (unsigned int ii = 0; ii < slab_its.dof->n_dofs_time(); ii++)
{
slab_owned_tmp[*lri + slab_its.dof->n_dofs_space() * ii] =
slab_initial_value[*lri];
}
}
slab_initial_constraints->distribute(slab_owned_tmp);
dealii::Table<2, dealii::DoFTools::Coupling> coupling_space(2 + 1, 2 + 1);
for (unsigned int i = 0; i < 2; i++)
{
coupling_space[i][2] = dealii::DoFTools::always;
coupling_space[2][i] = dealii::DoFTools::always;
for (unsigned int j = 0; j < 2; j++)
{
coupling_space[i][j] = dealii::DoFTools::always;
}
}
dealii::DynamicSparsityPattern dsp(slab_its.dof->n_dofs_spacetime());
idealii::slab::DoFTools::make_upwind_sparsity_pattern(*slab_its.dof,
coupling_space,
dsp,
slab_zero_constraints);
dealii::SparsityTools::distribute_sparsity_pattern(
dsp, slab_locally_owned_dofs, mpi_comm, slab_locally_relevant_dofs);
slab_system_matrix.reinit(slab_locally_owned_dofs,
slab_locally_owned_dofs,
dsp);
slab_its.solution->reinit(slab_locally_owned_dofs,
slab_locally_relevant_dofs,
mpi_comm);
slab_system_rhs.reinit(slab_locally_owned_dofs, mpi_comm);
*slab_its.solution = slab_owned_tmp;
}
void
Step4::assemble_system_on_slab()
{
slab_system_matrix = 0;
idealii::spacetime::QGauss<2> quad(fe.spatial()->degree + 3,
fe.temporal()->degree + 2);
idealii::spacetime::FEValues<2> fe_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
idealii::spacetime::FEJumpValues<2> fe_jump_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
const unsigned int dofs_per_spacetime_cell = fe.dofs_per_cell;
auto N = slab_its.tria->temporal()->n_global_active_cells();
dealii::FullMatrix<double> cell_matrix(N * dofs_per_spacetime_cell,
N * dofs_per_spacetime_cell);
std::vector<dealii::types::global_dof_index> local_spacetime_dof_index(
N * dofs_per_spacetime_cell);
unsigned int n;
unsigned int n_quad_spacetime = fe_values_spacetime.n_quadrature_points;
unsigned int n_quad_space = quad.spatial()->size();
dealii::FEValuesExtractors::Vector velocity(0);
dealii::FEValuesExtractors::Scalar pressure(2);
std::vector<dealii::Vector<double>> old_solution_values(
n_quad_spacetime, dealii::Vector<double>(3));
std::vector<std::vector<dealii::Tensor<1, 2>>> old_solution_grads(
n_quad_spacetime, std::vector<dealii::Tensor<1, 2>>(3));
for (const auto &cell_space :
slab_its.dof->spatial()->active_cell_iterators())
{
if (cell_space->is_locally_owned()) // only rank local contributions
{
fe_values_spacetime.reinit_space(cell_space);
fe_jump_values_spacetime.reinit_space(cell_space);
cell_matrix = 0;
for (const auto &cell_time :
slab_its.dof->temporal()->active_cell_iterators())
{
n = cell_time->index();
fe_values_spacetime.reinit_time(cell_time);
fe_jump_values_spacetime.reinit_time(cell_time);
fe_values_spacetime.get_local_dof_indices(
local_spacetime_dof_index);
fe_values_spacetime.get_function_values(*slab_its.solution,
old_solution_values);
fe_values_spacetime.get_function_space_gradients(
*slab_its.solution, old_solution_grads);
for (unsigned int q = 0; q < n_quad_spacetime; ++q)
{
dealii::Tensor<1, 2> v;
dealii::Tensor<2, 2> grad_v;
for (int c = 0; c < 2; c++)
{
v[c] = old_solution_values[q](c);
for (int d = 0; d < 2; d++)
{
grad_v[c][d] = old_solution_grads[q][c][d];
}
}
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
for (unsigned int j = 0; j < dofs_per_spacetime_cell; ++j)
{
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.vector_value(velocity, i, q) *
(fe_values_spacetime.vector_space_grad(velocity,
j,
q) *
v +
grad_v * fe_values_spacetime.vector_value(velocity,
j,
q)) *
fe_values_spacetime.JxW(q);
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.vector_value(velocity, i, q) *
fe_values_spacetime.vector_dt(velocity, j, q) *
fe_values_spacetime.JxW(q);
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
dealii::scalar_product(
fe_values_spacetime.vector_space_grad(velocity,
i,
q),
fe_values_spacetime.vector_space_grad(velocity,
j,
q)) *
fe_values_spacetime.JxW(q) * nu_f;
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.vector_divergence(velocity,
i,
q) *
fe_values_spacetime.scalar_value(pressure, j, q) *
fe_values_spacetime.JxW(q);
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.scalar_value(pressure, i, q) *
fe_values_spacetime.vector_divergence(velocity,
j,
q) *
fe_values_spacetime.JxW(q);
} // dofs j
} // dofs i
} // quad
for (unsigned int q = 0; q < n_quad_space; ++q)
{
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
for (unsigned int j = 0; j < dofs_per_spacetime_cell; ++j)
{
cell_matrix(i + n * dofs_per_spacetime_cell,
j + n * dofs_per_spacetime_cell) +=
fe_jump_values_spacetime.vector_value_plus(velocity,
i,
q) *
fe_jump_values_spacetime.vector_value_plus(velocity,
j,
q) *
fe_jump_values_spacetime.JxW(q);
if (n > 0)
{
cell_matrix(i + n * dofs_per_spacetime_cell,
j + (n - 1) *
dofs_per_spacetime_cell) -=
fe_jump_values_spacetime.vector_value_plus(
velocity, i, q) *
fe_jump_values_spacetime.vector_value_minus(
velocity, j, q) *
fe_jump_values_spacetime.JxW(q);
}
} // dofs j
} // dofs i
}
} // cell time
slab_zero_constraints->distribute_local_to_global(
cell_matrix, local_spacetime_dof_index, slab_system_matrix);
}
} // cell space
slab_system_matrix.compress(dealii::VectorOperation::add); // communication
}
void
Step4::assemble_residual_on_slab()
{
slab_system_rhs = 0;
idealii::spacetime::QGauss<2> quad(fe.spatial()->degree + 3,
fe.temporal()->degree + 2);
idealii::spacetime::FEValues<2> fe_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
idealii::spacetime::FEJumpValues<2> fe_jump_values_spacetime(
fe,
quad,
dealii::update_values | dealii::update_gradients |
dealii::update_quadrature_points | dealii::update_JxW_values);
const unsigned int dofs_per_spacetime_cell = fe.dofs_per_cell;
auto N = slab_its.tria->temporal()->n_global_active_cells();
dealii::Vector<double> cell_rhs(N * dofs_per_spacetime_cell);
std::vector<dealii::types::global_dof_index> local_spacetime_dof_index(
N * dofs_per_spacetime_cell);
unsigned int n;
unsigned int n_quad_spacetime = fe_values_spacetime.n_quadrature_points;
unsigned int n_quad_space = quad.spatial()->size();
dealii::FEValuesExtractors::Vector velocity(0);
dealii::FEValuesExtractors::Scalar pressure(2);
std::vector<dealii::Vector<double>> old_solution_values(
n_quad_spacetime, dealii::Vector<double>(3));
std::vector<dealii::Vector<double>> old_solution_dt(
n_quad_spacetime, dealii::Vector<double>(3));
std::vector<std::vector<dealii::Tensor<1, 2>>> old_solution_grads(
n_quad_spacetime, std::vector<dealii::Tensor<1, 2>>(3));
std::vector<dealii::Vector<double>> old_solution_plus(
n_quad_space, dealii::Vector<double>(3));
std::vector<dealii::Vector<double>> old_solution_minus(
n_quad_space, dealii::Vector<double>(3));
for (const auto &cell_space :
slab_its.dof->spatial()->active_cell_iterators())
{
if (cell_space->is_locally_owned()) // only rank local contributions
{
fe_values_spacetime.reinit_space(cell_space);
fe_jump_values_spacetime.reinit_space(cell_space);
cell_rhs = 0;
for (const auto &cell_time :
slab_its.dof->temporal()->active_cell_iterators())
{
n = cell_time->index();
fe_values_spacetime.reinit_time(cell_time);
fe_jump_values_spacetime.reinit_time(cell_time);
fe_values_spacetime.get_local_dof_indices(
local_spacetime_dof_index);
fe_values_spacetime.get_function_values(*slab_its.solution,
old_solution_values);
fe_values_spacetime.get_function_dt(*slab_its.solution,
old_solution_dt);
fe_values_spacetime.get_function_space_gradients(
*slab_its.solution, old_solution_grads);
for (unsigned int q = 0; q < n_quad_spacetime; ++q)
{
dealii::Tensor<1, 2> v;
dealii::Tensor<1, 2> dt_v;
dealii::Tensor<2, 2> grad_v;
const double p = old_solution_values[q](2);
for (int c = 0; c < 2; c++)
{
v[c] = old_solution_values[q](c);
dt_v[c] = old_solution_dt[q](c);
for (int d = 0; d < 2; d++)
{
grad_v[c][d] = old_solution_grads[q][c][d];
}
}
const double div_v = dealii::trace(grad_v);
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.vector_value(velocity, i, q) *
dt_v * fe_values_spacetime.JxW(q);
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.vector_value(velocity, i, q) *
grad_v * v * fe_values_spacetime.JxW(q);
cell_rhs(i + n * dofs_per_spacetime_cell) -=
nu_f *
dealii::scalar_product(
fe_values_spacetime.vector_space_grad(velocity, i, q),
grad_v) *
fe_values_spacetime.JxW(q);
cell_rhs(i + n * dofs_per_spacetime_cell) +=
fe_values_spacetime.vector_divergence(velocity, i, q) *
p * fe_values_spacetime.JxW(q);
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_values_spacetime.scalar_value(pressure, i, q) *
div_v * fe_values_spacetime.JxW(q);
} // dofs i
} // quad
if (n == 0)
{
fe_values_spacetime.spatial()->get_function_values(
slab_initial_value, old_solution_minus);
}
fe_jump_values_spacetime.get_function_values_plus(
*slab_its.solution, old_solution_plus);
dealii::Tensor<1, 2> v_plus;
dealii::Tensor<1, 2> v_minus;
for (unsigned int q = 0; q < n_quad_space; ++q)
{
for (unsigned int c = 0; c < 2; ++c)
{
v_plus[c] = old_solution_plus[q](c);
v_minus[c] = old_solution_minus[q](c);
}
for (unsigned int i = 0; i < dofs_per_spacetime_cell; ++i)
{
cell_rhs(i + n * dofs_per_spacetime_cell) -=
fe_jump_values_spacetime.vector_value_plus(velocity,
i,
q) *
v_plus * fe_jump_values_spacetime.JxW(q);
cell_rhs(i + n * dofs_per_spacetime_cell) +=
fe_jump_values_spacetime.vector_value_plus(velocity,
i,
q) *
v_minus * fe_jump_values_spacetime.JxW(q);
} // dofs i
} // quad_space
if (n < N - 1)
{
fe_jump_values_spacetime.get_function_values_minus(
*slab_its.solution, old_solution_minus);
}
} // cell time
slab_zero_constraints->distribute_local_to_global(
cell_rhs, local_spacetime_dof_index, slab_system_rhs);
}
} // cell space
slab_system_rhs.compress(dealii::VectorOperation::add);
}
void
Step4::solve_Newton_problem_on_slab()
{
pout << "Starting Newton solve" << std::endl;
dealii::SolverControl sc(10000, 1.0e-14, false, false);
dealii::TrilinosWrappers::SolverDirect::AdditionalData ad(false,
"Amesos_Klu");
auto solver =
std::make_shared<dealii::TrilinosWrappers::SolverDirect>(sc, ad);
double newton_lower_bound = 1.0e-10;
unsigned int max_newton_steps = 10;
unsigned int max_line_search_steps = 10;
double newton_rebuild_parameter = 0.1;
double newton_damping = 0.6;
assemble_residual_on_slab();
double newton_residual = slab_system_rhs.linfty_norm();
double old_newton_residual;
double new_newton_residual;
unsigned int newton_step = 1;
unsigned int line_search_step;
pout << "0\t" << newton_residual << std::endl;
while (newton_residual > newton_lower_bound &&
newton_step <= max_newton_steps)
{
old_newton_residual = newton_residual;
assemble_residual_on_slab();
newton_residual = slab_system_rhs.linfty_norm();
if (newton_residual < newton_lower_bound)
{
pout << "res\t" << newton_residual << std::endl;
break;
}
if (newton_residual / old_newton_residual > newton_rebuild_parameter)
{
solver = nullptr;
solver =
std::make_shared<dealii::TrilinosWrappers::SolverDirect>(sc, ad);
assemble_system_on_slab();
solver->initialize(slab_system_matrix);
}
solver->solve(slab_newton_update, slab_system_rhs);
slab_zero_constraints->distribute(slab_newton_update);
slab_owned_tmp = *slab_its.solution;
for (line_search_step = 0; line_search_step < max_line_search_steps;
line_search_step++)
{
slab_owned_tmp += slab_newton_update;
*slab_its.solution = slab_owned_tmp;
assemble_residual_on_slab();
new_newton_residual = slab_system_rhs.linfty_norm();
if (new_newton_residual < newton_residual)
break;
else
slab_owned_tmp -= slab_newton_update;
slab_newton_update *= newton_damping;
}
pout << std::setprecision(5) << newton_step << "\t" << std::scientific
<< newton_residual << "\t" << std::scientific
<< newton_residual / old_newton_residual << "\t";
if (newton_residual / old_newton_residual > newton_rebuild_parameter)
pout << "r\t";
else
pout << " \t";
pout << line_search_step << "\t" << std::scientific << std::endl;
newton_step++; // Update working index
}
}
void
Step4::calculate_functional_values_on_slab()
{
dealii::Quadrature<1> quad_time(
slab_its.dof->temporal()->get_fe(0).get_unit_support_points());
dealii::FEValues<1> fev(slab_its.dof->temporal()->get_fe(0),
quad_time,
dealii::update_quadrature_points);
std::vector<dealii::types::global_dof_index> local_indices(
slab_its.dof->dofs_per_cell_time());
auto n_dofs = slab_its.dof->n_dofs_time();
dealii::TrilinosWrappers::MPI::Vector tmp = *slab_its.solution;
double time = 0.;
unsigned int time_dof = 0;
double pfront = 0.;
double pback = 0.;
double pdiff = 0.;
dealii::Tensor<1, 2> drag_lift_tensor;
dealii::Point<2> front(0.15, 0.2);
dealii::Point<2> back(0.25, 0.2);
dealii::TrilinosWrappers::MPI::Vector local_solution;
local_solution.reinit(space_locally_owned_dofs,
space_locally_relevant_dofs,
mpi_comm);
for (const auto &cell_time :
slab_its.dof->temporal()->active_cell_iterators())
{
fev.reinit(cell_time);
cell_time->get_dof_indices(local_indices);
for (unsigned int q = 0; q < quad_time.size(); ++q)
{
time = fev.quadrature_point(q)[0];
time_dof = local_indices[q];
idealii::slab::VectorTools::extract_subvector_at_time_dof(
*slab_its.solution, local_solution, time_dof);
pfront = calculate_pressure_at_point(front, local_solution);
pback = calculate_pressure_at_point(back, local_solution);
pdiff = pfront - pback;
calculate_drag_lift_tensor(local_solution, drag_lift_tensor);
functional_log << time << ", " << pfront << ", " << pback << ", "
<< pdiff << ", " << drag_lift_tensor[0] << ", "
<< drag_lift_tensor[1] << std::endl;
}
}
}
double
Step4::calculate_pressure_at_point(
const dealii::Point<2> x,
const dealii::TrilinosWrappers::MPI::Vector &u)
{
dealii::Vector<double> x_h(3);
try
{
dealii::VectorTools::point_value(*slab_its.dof->spatial(), u, x, x_h);
}
catch (typename dealii::VectorTools::ExcPointNotAvailableHere e)
{}
auto minmax = dealii::Utilities::MPI::min_max_avg(x_h[2], mpi_comm);
if (std::abs(minmax.min) > minmax.max)
{
return minmax.min;
}
else
{
return minmax.max;
}
}
void
Step4::calculate_drag_lift_tensor(dealii::TrilinosWrappers::MPI::Vector &u,
dealii::Tensor<1, 2> &drag_lift_value)
{
const dealii::QGauss<1> face_quad(6);
dealii::FEFaceValues<2> fe_face_values(*fe.spatial(),
face_quad,
dealii::update_values |
dealii::update_gradients |
dealii::update_normal_vectors |
dealii::update_JxW_values |
dealii::update_quadrature_points);
const unsigned int dofs_per_cell = slab_its.dof->dofs_per_cell_space();
const unsigned int n_face_q_points = face_quad.size();
std::vector<unsigned int> local_dof_indices(dofs_per_cell);
std::vector<dealii::Vector<double>> face_solution_values(
n_face_q_points, dealii::Vector<double>(3));
std::vector<std::vector<dealii::Tensor<1, 2>>> face_solution_grads(
n_face_q_points, std::vector<dealii::Tensor<1, 2>>(3));
dealii::Tensor<2, 2> pI;
pI.clear();
dealii::Tensor<2, 2> grad_v;
dealii::Tensor<2, 2> stress
drag_lift_value = 0.;
for (const auto &cell : slab_its.dof->spatial()->active_cell_iterators())
{
if (cell->is_locally_owned() && cell->at_boundary())
{
for (unsigned int face = 0;
face < dealii::GeometryInfo<2>::faces_per_cell;
++face)
if (cell->face(face)->at_boundary() &&
cell->face(face)->boundary_id() == 80)
{
fe_face_values.reinit(cell, face);
fe_face_values.get_function_values(slab_initial_value,
face_solution_values);
fe_face_values.get_function_gradients(slab_initial_value,
face_solution_grads);
for (unsigned int q = 0; q < n_face_q_points; ++q)
{
for (unsigned int l = 0; l < 2; ++l)
{
pI[l][l] = face_solution_values[q][2];
for (unsigned int m = 0; m < 2; ++m)
{
grad_v[l][m] = face_solution_grads[q][l][m];
}
}
stress = -pI + nu_f * grad_v;
drag_lift_value -= stress *
fe_face_values.normal_vector(q) *
fe_face_values.JxW(q);
}
}
}
}
double tmp = dealii::Utilities::MPI::sum(drag_lift_value[0], mpi_comm);
drag_lift_value[0] = tmp;
tmp = dealii::Utilities::MPI::sum(drag_lift_value[1], mpi_comm);
drag_lift_value[1] = tmp;
drag_lift_value *= 20.;
}
void
Step4::output_results_on_slab() // Nothing new compared to step-2
{
auto n_dofs = slab_its.dof->n_dofs_time();
std::vector<std::string> field_names;
std::vector<dealii::DataComponentInterpretation::DataComponentInterpretation>
dci;
for (unsigned int i = 0; i < 2; i++)
{
field_names.push_back("velocity");
dci.push_back(
dealii::DataComponentInterpretation::component_is_part_of_vector);
}
field_names.push_back("pressure");
dci.push_back(dealii::DataComponentInterpretation::component_is_scalar);
dealii::TrilinosWrappers::MPI::Vector tmp = *slab_its.solution;
for (unsigned i = 0; i < n_dofs; i++)
{
dealii::DataOut<2> data_out;
data_out.attach_dof_handler(*slab_its.dof->spatial());
dealii::TrilinosWrappers::MPI::Vector local_solution;
local_solution.reinit(space_locally_owned_dofs,
space_locally_relevant_dofs,
mpi_comm);
idealii::slab::VectorTools::extract_subvector_at_time_dof(tmp,
local_solution,
i);
data_out.add_data_vector(local_solution,
field_names,
dealii::DataOut<2>::type_dof_data,
dci);
data_out.build_patches(2);
std::ostringstream filename;
filename << "newton_navierstokes_solution_dG(" << fe.temporal()->degree
<< ")_t_" << slab * n_dofs + i << ".vtu";
data_out.write_vtu_in_parallel(filename.str().c_str(), mpi_comm);
}
}
int
main(int argc, char *argv[])
{
dealii::Utilities::MPI::MPI_InitFinalize mpi(argc, argv, 1);
Teuchos::CommandLineProcessor clp;
clp.setDocString(
"This example program demonstrates solving the Navier-Stokes "
"equation with Trilinos + MPI");
bool write_vtu = true;
clp.setOption("write-vtu",
"no-vtu",
&write_vtu,
"Write results into vtu files?");
int r = 0;
clp.setOption("r", &r, "temporal FE degree");
clp.throwExceptions(false);
Teuchos::CommandLineProcessor::EParseCommandLineReturn parse_return =
clp.parse(argc, argv);
if (parse_return == Teuchos::CommandLineProcessor::PARSE_HELP_PRINTED)
{
return 0; // don't fail if the program was called with ``--help``.
}
if (parse_return != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
{
return 1; // Error!
}
Step4 problem(r, write_vtu);
problem.run();
}